Shell for Teaching	2
ें AICTE	aduoa
The second	5

AICTE Sponsored Short Term Course On

"Nanoelectronics Devices and Circuits"

-- January 04-09, 2021--

Department of Electronics Engineering and School of Materials Science and Technology

Course Coordinator(s)

Dr. Shivam Verma (Convener) Dr. Sushant Mittal (Co-Convener) Dr. Shrawan Kumar Mishra (Co-Convener)

> Quality Improvement Program Center Indian Institute of Technology (BHU) Varanasi - 221005, (U.P.)

Phone: 0542 - 2369434 Email: coordinator.qip@itbhu.ac.in

Se.	About the Course	Basic Illustration of TCAD with examples
A LEE	Indian Institute of Technology, (Banaras Hindu	• TCAD Simulation of advanced nanoscale devices
A ISTNOT	University) is organizing a course on	(Diode, MOSFET, 2D FinFET)
To a large	"Nanoelectronics Devices and Circuits" from	• Modeling and simulation of advanced optoelectronic
aucro	04.01.2021 to 09.01.2021. The course is open to	devices
	teachers from AICTE recognized management and	 Spintronic device simulation using OOMMF
se	engineering colleges. The online application	
	through google form link can be done latest by	
	31.12.2020. The candidate will be informed of his	
"	selection in advance.	Important Dates
		•
	The main focus of the course is making the	Last date for receiving applications: Dec 31, 2020
	participants get familiarized with the recent	Intimation to selected applicants: Jan 2, 2021
	advancements in nano-scale devices and circuits.	Commencement of the course: Jan 04, 2021
	This course has following major objectives/benefits	On the former former to the first
nd	1. To introduce participants to emerging devices,	Google form for registration:
ogy	modeling and simulation methodologies and	https://docs.google.com/forms/d/e/1FAlpQLSca
55	applications in the area of nanoelectronics.	bUqFVirqPkQX8VB79WKoDXtBwjJNK4CAl3k-
	2. To discuss design, operation and modeling of	2YX5aSX6PA/viewform?usp=sf_link
	nano-scale devices.	T I C C C C
	3. A discrete view of spintronic and optoelectronic	The course is free of charge.
	devices for the post-cmos era.	
	4. A hands-on demonstration of modeling and	Contact Details
	simulation of nanowire, multigate, spintronic	
	devices using advanced SPICE and TCAD	Address for sending application & contact
	simulators.	Dr Shivam Verma, Convener, QIP-STC
	5. A demonstration of the design-technology co-	Dr. Sushant Mittal, (Co-Convener)
	optimization flow, which connects novel materials	Department of Electronics Engineering IIT(BHU),
	to the circuits performance including the front-end	Varanasi, U.P, 221005
	of the line device, and back-end of the line	and, Dr. Shrawan Kumar Mishra, (Co-Convener)
	parasitics.	School of Materials Science and Technology IIT(BHU),
		Varanasi, India. 221005
	Course Content	E
	 Introduction to Nano-scale MOS modeling 	Email: <u>shivam.ece@iitbhu.ac.in</u>
	• Nanowire, Multigate (MuG), and tunneling based	<u>smittal.ece@iitbhu.ac.in</u>
	MOS devices	shrawan.ece@iitbhu.ac.in
	Optoelectronic devices	
	• Thin film devices	General Information
	Spintronic devices and non-volatile logic	
	• Basic illustrations of SPICE with examples	The STC will be conducted in the online mode through
	 Design and modeling using SPICE 	suitable platform which will be intimated later on.

Course material (if any) and lab sessions will also be delivered online. The participants are requested to arrange laptops and strong internet connection for content delivery and lab/lecture sessions.

Academicians/experts in the concerned field from IITs/Industry(R&D) will be invited to deliver lectures in the programme. Speakers from other renowned institutions are also expected to deliver as part of the course.

The schedule of the course will be announced at later stage and intimated to registered candidates. The e-certificates will be provided based on performance and attendance.

About IIT(BHU)

The Indian Institute of Technology (Banaras Hindu University), Varanasi is situated in the magnificent campus of Banaras Hindu University at the southern end of the ancient city of Varanasi on the banks of the holy river Ganga. Engineering Education in Banaras Hindu University commenced in 1919 with the establishment of Banaras Engineering College (BENCO). The Institution has also pioneered engineering education by being the First in the country to start degree courses in Mining, Metallurgy, Ceramic Engineering and Pharmaceutics with the establishment of the College of Mining and Metallurgy and the College of Technology in the year 1923 and 1932 respectively. In 1969 these three colleges were amalgamated to form the Institute of Technology. The Institute of Technology, Banaras Hindu University (IT-BHU), has been converted into Indian Institute of Technology (Banaras Hindu University), Varanasi by the Government of India on 29th June, 2012. The institute aspires to be a harbinger of modern interdisciplinary technological advancement in the country and at a forefront of imparting quality education by use of innovative

pedagogy culminating traditional with contemporary methods.

About Varanasi

Varanasi, also known as Kashi or Benares or Banaras, is one of world's oldest living cities. It is regarded as the religious capital of India. The city is located on the left bank of the holy river Ganga (Ganges), and is one of the seven sacred pilgrimage cities for Hindus. To be in Varanasi is an experience

in itself. The majestic ghats on the banks of Ganga, morning sunrise, visit to famous temples and evening Ganga Aarati are some of the special attractions. Varanasi is also renowned for its rich tradition of music, arts, crafts and education. For more details, visit <u>http://varanasi.nic.in/.</u>