preetamsingh.cer's picture
Dr. Preetam Singh
Associate Professor
Department Of ceramic Engineering IITBHU
preetamsingh.cer@iitbhu.ac.in
9473720659
8118873748
Area of Interest: 
Energy Materials, Rechargeable Battery, Fuel Cells and Renewable Energy, Solar-Thermal Energy, Thermochemical water splitting and thermoelectric

  • Assistant Professor (2016 onwards), Department of Ceramic Engineering, IIT(BHU), Varanasi.
  • Post-Doctoral fellow: January 2011-December 2015, Texas Material Institute, University of Texas at Austin, USA with Professor John B. Goodenough (http://en.wikipedia.org/wiki/John_B._Goodenough).
  • Institute Post-Doctoral fellow: August 2010-December 2010 with Prof. M. S. Hegde, Solid State & Structural Chemistry Unit (SSCU), Chemical Science Division, Indian Institute of Science, Bangalore, India (2010).
  • Integrated PhD (MS +PhD, 2010):  Solid State & Structural Chemistry Unit (SSCU), Chemical Science Division, Indian Institute of Science, Bangalore, India (2010) with Prof. M. S. Hegde.
  • B. Sc. (Hons), Honors in Chemistry (2004), Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India

Energy Materials: Solid Oxide Fuel Cells, Rechargeable Li-ion and Na-ion batteries, Metal-ion Capacitors and Pseudo-Capacitors, Photo-catalysis, and High Dielectric and Magnetic materials, Renewable energy, Solar-thermal energy and thermochemical water splitting materials.

Patents:

  1. Monoclinic Sr1-xAxSi1-yGeyO3-0.5x, Wherein A is K or Na, oxide-ion conductor: P. Singh & J. B. Goodenough, USA patent (2013); WO 2014046809 A3, PCT  Number: PCT/US2013/054742.
  2. Oxygen ion conductors and related composites and devices, P. Singh & J. B. Goodenough, USA Patent (2015);WO2015023688 A1, PCT number: PCT/US2014/050765.
  3. Water Solvated Glass/Amorphous Solid Ionic Conductors, M. Helena Braga, Jorge A. Ferreira, P. Singh and John B. Goodenough, USA Patent, 2015, Attorney Docket No.: 065715.0465.
  4. ADVANCED ELECTRODE MATERIALS FOR SUPERIOR PSUEDOCAPACITORS AND REVERSIBLE ALKALI-ION (Li+/Na+) BATTERIES, Preetam Singh and Rajiv Prakash, Indian Patent, 2016, Application No. 201611007934.
  5. HIGH CAPACITANCE ELECTRODE FOR PSEUDOCAPACITORS AND A METHOD OF PREPARING THE SAME, Asha Gupta, Preetam Singh and Rajiv Prakash, 2017, Application No. 201711007782.
  6. A METHOD FOR PREPARING TILES AND COMPOSITION THEREOF, S K Saddam Hossain, Lakshya Mathur, Manas, Ranjan Majhi and Preetam Singh, Indian Patent (2016), Application no: 201631030744.

Publications:

  1. Eldfellite-structured NaCr(SO4)2: a potential anode for rechargeable Na-ion and Li-ion batteries, Saurabh Kumar, Rakesh Mondal, Rajiv Prakash and Preetam Singh*, Dalton Trans., 2022, 51, 11823–11833.
  2. The prospect and challenges of sodium-ion batteries for low-temperature conditions,Meng Wang,Qianchen Wang,Xiangyu Ding,Yingshuai Wang,Yuhang Xin,Preetam Singh,Feng Wu,Hongcai Gao, Interdisciplinary Materials. 2022; 1:373–395.
  3. NiC2O4 ⋅ 2H2O Nanoflakes: A Novel Redox-mediated Intercalative Pseudocapacitive Electrode for Supercapacitor Applications in Aqueous KOH and Neutral Na2SO4 electrolytes,Neeraj Kumar Mishra,Abhijeet Kumar Singh,Rakesh Mondal,Dr. Preetam Singh*, ChemistrySelect,June 2022.
  4. Photocatalytic dye-degradation activity of nanocrystalline Ti1xMxO2d (M ¼Ag, Pd, Fe, Ni and x ¼ 0, 0.01) for water pollution abatement, Vaishali Soni,  Abhay Narayan Singh, Preetam Singh cand Asha Gupta,RSC Adv., 2022, 12, 18794–18805.
  5. Gd3+ and Bi3+ co-substituted cubic zirconia; (Zr1xyGdxBiyO2d): a novel high k relaxor dielectric and superior oxide-ion conductor,Akanksha Yadava Rajiv Prakashb and Preetam Singh*, RSC Adv., 2022, 12, 14551–14561.
  6. SrFeO3d: a novel Fe4+-Fe2+ redox mediated pseudocapacitive electrode in aqueous electrolyte, Asha Gupta, Vishal Kushwaha, Rakesh Mondal, Abhay Narayan Singh, Rajiv Prakash,  K. D. Mandala and Preetam Singh*,Phys. Chem. Chem. Phys., 2022, 24, 11066–11078.
  7. Investigation of the Role of Sr and Development of Superior SrDoped Hexagonal BaCoO3−δ Perovskite Bifunctional OER/ORR Catalysts in Alkaline Media, Rakesh Mondal, Himanshu Ratnawat, Soham Mukherjee, Asha Gupta, and Preetam Singh*,: Energy Fuels 2022, 36, 3219−3228.
  8. NASICON-structured Na3Fe2PO4(SO4)2: a potential cathode material for rechargeable sodium-ion batteries, Saurabh Kumar,†a R. Ranjeeth,†b Neeraj Kumar Mishra,b Rajiv Prakash a and Preetam Singh*, Dalton Trans., 2022, 51, 5834–5840.
  9. Synthesis, Characterizations, and Electrochemical Performances of Highly Porous, Anhydrous Co0.5Ni0.5C2O4 for Pseudocapacitive Energy Storage Applications Neeraj Kumar Mishra, Rakesh Mondal, Thandavarayan Maiyalagan, and Preetam Singh* ACS Omega 2022, 7, 1975−1987.
  10. Production of hydrogen‑ and methane‑rich gas by stepped pyrolysis of biomass and its utilization in IC engines Brijesh Kumar Prajapati, Amrit Anand, Shalini Gautam, Preetam Singh,Clean Technologies and Environmental Policy (2022) 24:1375–1388.
  11. Effect of bonding state of single atom iron on semi-coke on reduction of NO: A DFT study, Ruinan Wang, Xingxing Cheng, Shengying Yue, Tien-Chien Jen, Preetam Singh, Zhiqiang Wang, Chemical Physics Letters, 2022, 787,139259.
  12. Electrochemical Performance of Delafossite, AgFeO2: A Pseudo-Capacitive Electrode in Neutral Aqueous Na2SO4 Electrolyte, Abhay Narayan Singh1, Rakesh Mondal2, Chandana Rath1 and Preetam Singh*, J. Electrochem. Soc. 2021168 120512.
  13. La1−xKxFeO3−δ: An Anion Intercalative Pseudocapacitive Electrode for Supercapacitor Application Rakesh Mondal, Neeraj Kumar Mishra, Thandavarayan Maiyalagan, Asha Gupta, and Preetam Singh* ACS Omega 2021, 6, 30488−30498.
  14. Synthesis, Characterization, and Ionic Conductivity Studies of Simultaneously Substituted K- and Ga-Doped BaZrO3 Akanksha Yadav, Ram Pyare, Thandavarayan Maiyalagan, and Preetam Singh*, ACS Omega 2021, 6, 30327−30334.
  15. Synthesis, characterizations and electrochemical performances of anhydrous CoC2O4 nanorods for pseudocapacitive energy storage applications Neeraj Kumar Mishra, Rakesh Mondal and Preetam Singh*,RSC Adv., 2021, 11, 33926–33937.
  16. Influence on properties of Bi0.9Sm0.1FeO3 multiferroic system with Mg substitution at Fe-site, Priyanka Verma, Preetam SinghP. K. Roy,, Journal of Solid State Chemistry,2021302, 122432.
  17. A Review on Transition-metal Oxalate Based Electrode for Supercapacitors Abhijeet Kumar Singh1 , Piyush Jaiswal1 and Preetam Singh, IOP Conf. Series: Materials Science and Engineering, 1166 (2021) 012032, IOP Publishing doi:10.1088/1757-899X/1166/1/012032.
  18. In-vitro analysis of bioactivity, hemolysis, and mechanical properties of Zn substituted Calcium Zirconium silicate (baghdadite), Sushma Yadav, Shreyasi Majumdar, Akher Ali, Sairam Krishnamurthy, Preetam Singh, Ram Pyare, Ceramics International,  2021,Volume 47, Issue 11, Pages 16037-16053.
  19. Effect of Mn-doping on the low temperature magnetic phase transitions of BiFeO3, Arun Kumar, Preetam Singh, Ram Janay Choudhary, Dhananjai Pandey, Journal of Alloys and Compounds, 2020,  Volume 825,  154148.
  20. Synthesis, characterization, mechanical and biological properties of biocomposite based on zirconia containing 1393 bioactive glass with hydroxyapatite Sushma Yadav, Preetam SinghRam Pyare,, Ceramics International,  2020Volume 46, Issue 8, Part A,  Pages 10442-10451.
  21. Ni stabilized rock-salt structured CoO; Co1xNixO: tuning of eg electrons to develop a novel OER catalyst† Rakesh Mondal,‡ Himanshu Ratnawat, ‡ Sarvesh Kumar, Anil Kumar and Preetam Singh *, RSC Adv., 2020, 10, 17845–17853.
  22. KTa1−x−yTixGeyO3−δ: A High κ Relaxor Dielectric and Superior OxideIon Electrolyte for IT-SOFC Akanksha Yadav, Ram Pyare, John B. Goodenough, and Preetam Singh*, ACS Appl. Energy Mater. 2020, 3, 3205−3211.
  23. Cu(I) substituted wurtzite ZnO: a novel room temperature lead free ferroelectric and high-k giant dielectric† Neeraj Singh and Preetam Singh *, RSC Adv., 2020, 10, 11382–11392.
  24. Fabrication of Nano-petals Zn0.97Cu0.03O Thin Film and Application in Methane Sensing, Brij Bansh Nath Anchal, Preetam Singh & Ram Pyare, Advances in VLSI, Communication, and Signal Processing. Lecture Notes in Electrical Engineering, 2020, vol 587. Springer, Singapore. https://doi.org/10.1007/978-981-32-9775-3_39.
  25. NaFe2PO4(SO4)2: A Potential Cathode for a Na-ion Battery, Konda Shiva , Preetam Singh, Weidong Zhou and John B. Goodenough, Energy Environ. Sci. (IF: 38.53), 2016,  2016, 9, 3103-3106..
  26. Investigation of Reversible Li Insertion into LiY(WO4)2, A Gupta, Preetam Singh, C. B. Mullins, John B. Goodenough, Chem. Mater. (IF: 9.811), 2016, 28 (13), 4641–464.
  27. Li2.97Mg0.03VO4: High rate capability and cyclability performances anode material for rechargeable Li-ion batteries, H. P. Youzhong Dong, Y. Zhao, H. Duan, Preetam Singh, Q. Kuang, Journal of Power Sources (IF: 9.719), 2016, 319, 104-110.
  28. Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells, M. Helena Braga,   Andrew J. Murchison,   Jorge A. Ferreira,  Preetam Singh and   John B. Goodenough, Energy Environ. Sci. (IF: 38.53), 2016, 9, 948-954.
  29. Solid Electrolytes in Rechargeable Electrochemical Cells, John B. Goodenough and  Preetam Singh, Journal of the Electrochemical Society, (IF: 4.316) 2015, 162 (14), A2387-A2392.
  30. Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries, Preetam Singh,  Konda Shiva, Hugo Celio and  John B. Goodenough, Energy Environ. Sci. (IF: 38.53), 2015,8, 3000-3005.
  31. Conditions for TaIV–TaIV Bonding in Trirutile LixMTa2O6, A. Gupta, Preetam Singh, H. Celio, C. B. Mullins, John B. Goodenough, Inorganic Chemistry (IF: 5.165), 2015, 54 (4), 2009-2016.
  32. Reinvestigation of the electrochemical lithium intercalation in 2H-and 3R-NbS2, Y. Liao, K. S. Park, Preetam Singh, W. Li, John B. Goodenough, Journal of Power Sources (IF: 9.179), 2014, 245, 27-32.
  33. Li6Zr2O7 interstitial lithium-ion solid electrolyte, Y. Liao, Preetam Singh, K. S. Park, W Li, John B. Goodenough, Electrochimica Acta (IF: 6.901), 2013, 102, 446-450.
  34. Comparison of Li+ Conductivity in Li3-xNb1-xMxO4 (M = W, Mo) with that in Li3-2xNixNbO4, Y. Liao, P. Singh, J. B. Goodenough, W. Li, Mater. Res. Bull. (IF: 4.641), 2013, 48, 1372-1375.
  35. Sr3−3xNa3xSi3O9−1.5x (x = 0.45) as a superior solid oxide-ion electrolyte for intermediate temperature-solid oxide fuel cells, T. Wei, Preetam Singh, Y. Gong, John B. Goodenough, Y. Huang and K. Huang, Energy Environ. Sci., (IF: 38.53) 2014, 7, 1680–1684.
  36. Structural investigation of the oxide-ion electrolyte with SrMO3 (M= Si/Ge) structure, R. Martinez-Coronado, P Singh, J Alonso-Alonso, J. B. Goodenough, Journal of Materials Chemistry A , (IF: 12.73) 2014, 2 (12), 4355-4360.
  37. Monoclinic Sr1-xNaxSiO3-0.5x: new superior oxide-ion conductors, P. Singh, J. B. Goodenough, J. Am. Chem. Soc (IF: 16.38).2013135 (27), pp 10149–10154.
  38. Sr1-xKxSi1-yGeyO3-0.5x: a new family of superior oxide-ion conductors, P. Singh, J. B. Goodenough, Energy Environ. Sci., (IF: 38.53)5, 9626–9631 (2012).
  39. Ce0.67Fe0.33O2-δand Ce0.65Fe0.33Pt0.02O2-δ: New water gas shift (WGS) catalysts, N. Mahadevaiah, P. Singh, B. D. Mukri, S. K. Parida, M.S. Hegde, Applied Catalysis B: Environmental (IF: 21.41) 108–109, 117–126 (2011).
  40. Pt ion substituted TiO2 (Ti0.9Pt0.1O2): a new high capacity anode material for Lithium battery, P. Singh, M. Patel, A. Gupta, A. J. Bhattacharyya and M. S. Hegde, J. Electrochem. Soc., 159 (8), A1189-A1197 (2012).
  41. Study of Anatase TiO2 in the Presence of N2 under Shock Dynamic Loading in a Free Piston Driven Shock Tube,V. Jayaram, P. Singh, K.P.J. Reddy,Advances in Ceramic Science and Engineering,2(1), 40-46 (2013).
  42. Experimental Investigation of Nano Ceramic Material Interaction with High Enthalpy Argon under Shock Dynamic Loading, V. Jayaram, P. Singh, K. P. J. Reddy,Applied Mechanics and Materials,83, 66-72 (2011).
  43. Electrocatalysis and redox behavior of Pt2+ ion in CeO2 and Ce0.85Ti0.15O2: XPS evidence of participation of lattice oxygen for high activity, S. Sharma, P. Singh, M. S. Hegde, Journal of  Solid State Electrochemistry, 15(10) 2185-2197 (2011).
  44. Ce0.95Ru0.05O2-δ: A New Water Gas Shift Catalyst for H2 Production, P. Singh, N. Mahadevaiah, S. K. Parida and M. S. Hegde, J. Chem. Sci. 123(5), 577–592 (2011).
  45. Sonochemical Synthesis of Ce1-xFexO2-δ (0≤x≤0.45) and Ce0.65Fe0.33Pd0.02O2-δnanocrystallites: Oxygen Storage Material, CO oxidation and Water Gas Shift Catalyst, P. Singh and M. S. Hegde, Dalton Trans., 39(44) 10768-10780 (2010).
  46. Sonochemical Synthesis of Thermally Stable Hierarchical Ce1-xMxO2-δ (M = Pt or Pd, 0≤x≤0.10) Nanocrystallites: Redox Properties and Methanol Electro-Oxidation Activity, P. Singh and M. S. Hegde, Crystal Growth & Design,10(7), 2995 (2010).
  47. Synthesis of BaSO4 nanoparticles by precipitation method using sodium hexametaphosphate as a stabilizer, A. Gupta, P. Singh and C. Shivakumara, Solid State Commun.,150,386 (2010).
  48. Ce0.67Cr0.33O2.11: A New Low-Temperature O2 Evolution Material and H2 Generation Catalyst by Thermochemical Splitting of Water, P. Singh and M. S. Hegde, Chem. Mater.(Materials Chemistry of Energy Conversion Special Issue),22, 762 (2010).
  49. Ce1-xRuxO2-δ (x = 0.05, 0.10): A New High Oxygen Storage Material and Pt, Pd-Free Three-Way Catalyst,P. Singh and M. S. Hegde, Chem. Mater., 21, 3337 (2009).
  50. Ce2/3Cr1/3O2+δ: A New Oxygen Storage Material Based on the Fluorite Structure, P. Singh, M. S. Hegde and J. Gopalakrishnan, Chem. Mater., 20,7268 (2008).
  51. Controlled synthesis of nanocrystalline CeO2 and Ce1-xMxO2-δ (M = Zr, Y, Ti, Pr and Fe) solid solutions by the hydrothermal method: Structure and oxygen storage capacity, P.  Singh, and M. S. Hegde, J. Solid State Chem.,181,3248 (2008).
  52. Synthesis of vaterite CaCO3 by direct precipitation using glycine and L-alanine as directing agents, C. Shivkumara, P. Singh, A. Gupta and M. S. Hegde, Mater. Res. Bull., 41, 1455 (2006).
  • All India Rank: 11, in Joint Admission test for M.Sc.(chemistry)  in IITs (JAM 2004)
Sponsoring Organization Period Title of Project PI/Co-PI
DST 2018-2020 Development of low cost sodium-ion battery: Fabrication and application of NASICON based electrodes.
(Amount of grant: INR 96 Lakhs)
Co-PI
SERB 2018-2020 Novel Electrode Materials for Reversible Alkali-ion (Li+/Na+) capacitors and Pseudocapacitors.
(Amount of grant: INR 46 Lakhs)
PI
SPARC 2019-2021 Development of Nanostructured Bi-functional oxide low cost electro-catalysts for Sustainable High Energy Density Metal-Air Battery for Electric vehicles.
(Amount of grant: INR 40 Lakhs)
 

Consultancy Works

SI No. Title Organization Funding
1 Consultancy on characterization and structural investigation of solid electrolyte sample for all solid sate batteries (ASSB) Renault Nissan Technology
and Business centre India
Pvt. Ltd. (RNTBC)
INR 5 Lakhs
2 Synthesis of glass electrolyte (with 10-4 s/cm conductivity) for all solid state battery (ASSB) Renault Nissan Technology
and Business centre India
Pvt. Ltd. (RNTBC)
INR 15 Lakhs
SI No. Organization Designation Period
1 Dept. of Ceramic Engineering, IIT(BHU) Varanasi DPGC Convener 01-08-2020 to 30-07-2021
2 Dept. of Ceramic Engineering, IIT(BHU) Varanasi DUGC convener 01-08-2016 to 30-07-2018
3 Central Instrument Facility (CIF), IIT(BHU) Varanasi Secretory and Member, Purchase committee 01-08-2016 to 30-07-2022

Ph.D Supervision
Completed: 2

  1. Mr. Brij Bansh Nath Anchal, Thesis topic  “Fabrication of nano-structured transition matal ion doped ZnO based thin films for methane sensing applications”. (Completed in year 2020).
  2. Ms. Sushma Yadav, Thesis topic  “Preparation characterization and mechanical proporties of bio-composite materials”. (Co-guide, completed in year 2020).

Ongoing(including Co-Supervision): 9

M.TechSupervision
Completed: 12

Event Organized (as Convener)

  1. 3rd National Conference of Materials for energy conversion and storage (MECS-2018), in association with Energy Science Society Of India (ESSI) at IIT(BHU), Varanasi. (between 18 - 20 October, 2018).
  2. INTERNATIONAL CONFERENCE ON BEYOND FOSSIL FUELS: The Future of Alternative Energy Technologies [B:FAT 2020], in association with Energy Science Society Of India (ESSI) and SRM Institute of Science & Technology, at IIT(BHU), Varanasi. (between 23 - 25 July, 2022).