Assistant Professor, Department of Mathematical Sciences, Indian Institute of Technology (BHU) Varanasi: August, 2021 - Present.
Former Positions:
Assistant Professor, Department of Applied Sciences, Indian Institute of Information Technology Allahabad.
Post-doctoral fellow, TIFR Centre for Applicable Mathematics, Bangalore.
Research Visit:
Visiting Researcher, Institut de mathématiques, University of Neuchâtel, Neuchâtel, Switzerland.
Education:
Ph.D., IIT Kanpur (Thesis Advisor: Prof. G. Santhanam).
M.Sc., IIT Kanpur.
B.Sc., P. P. N. College, Kanpur.
M Ghosh; Sheela Verma, Reverse Faber-Krahn inequality for the p-Laplacian in Hyperbolic space, arXiv:2205.13372.
T V Anoop; Sheela Verma, Szegö-Weinberger type inequalities for symmetric domains in simply connected space forms, Journal of Mathematical Analysis and Applications (2022), https://doi.org/10.1016/j.jmaa.2022.126429
Bruno Colbois; Sheela Verma, Sharp Steklov upper bound for submanifolds of revolution. Journal of Geometric Analysis 31 (2021), no. 11, 11214–11225.
Sheela Verma, An isoperimetric inequality for the harmonic mean of the Steklov eigenvalues in hyperbolic space. Archiv der Mathematik (Basel) 116 (2021), no. 2, 193–201.
Sheela Verma; G. Santhanam, Sharp bounds for Steklov eigenvalues on star-shaped domains. Advances in Pure and Applied Mathematics 11 (2020), no. 2, 47–56.
Sheela Verma; G. Santhanam, On eigenvalue problems related to the Laplacian in a class of doubly connected domains.Monatshefte für Mathematik 193 (2020), no. 4, 879–899.
Sheela Verma, An upper bound for the first nonzero Neumann eigenvalue. Journal of Geometry and Physics 157 (2020), 103838.
Sheela Verma, Upper bound for the first nonzero eigenvalue related to the p-Laplacian. Proc. Indian Acad. Sci. Math. Sci. 130 (2020), no. 1, Paper No. 21.
Sheela Verma, Bounds for the Steklov eigenvalues. Archiv der Mathematik (Basel) 111 (2018), no. 6, 657–668.