Dr. Sheela Verma
Assistant Professor
Department of Mathematical Sciences IIT (BHU)
sheela.mat@iitbhu.ac.in
7905764439
Area of Interest:
Spectral Geometry, Analysis on Manifolds, Riemannian Geometry
Present Position:
- Assistant Professor, Department of Mathematical Sciences, Indian Institute of Technology (BHU) Varanasi: August, 2021 - Present.
Former Positions:
- Assistant Professor, Department of Applied Sciences, Indian Institute of Information Technology Allahabad.
- Post-doctoral fellow, TIFR Centre for Applicable Mathematics, Bangalore.
Research Visit:
- Visiting Researcher, Institut de mathématiques, University of Neuchâtel, Neuchâtel, Switzerland.
Education:
- Ph.D., IIT Kanpur (Thesis Advisor: Prof. G. Santhanam).
- M.Sc., IIT Kanpur.
- B.Sc., P. P. N. College, Kanpur.
- M Ghosh; Sheela Verma, Reverse Faber-Krahn inequality for the p-Laplacian in Hyperbolic space, arXiv:2205.13372.
- T V Anoop; Sheela Verma, Szegö-Weinberger type inequalities for symmetric domains in simply connected space forms, Journal of Mathematical Analysis and Applications (2022), https://doi.org/10.1016/j.jmaa.2022.126429
- Bruno Colbois; Sheela Verma, Sharp Steklov upper bound for submanifolds of revolution. Journal of Geometric Analysis 31 (2021), no. 11, 11214–11225.
- Sheela Verma, An isoperimetric inequality for the harmonic mean of the Steklov eigenvalues in hyperbolic space. Archiv der Mathematik (Basel) 116 (2021), no. 2, 193–201.
- Sheela Verma; G. Santhanam, Sharp bounds for Steklov eigenvalues on star-shaped domains. Advances in Pure and Applied Mathematics 11 (2020), no. 2, 47–56.
- Sheela Verma; G. Santhanam, On eigenvalue problems related to the Laplacian in a class of doubly connected domains.Monatshefte für Mathematik 193 (2020), no. 4, 879–899.
- Sheela Verma, An upper bound for the first nonzero Neumann eigenvalue. Journal of Geometry and Physics 157 (2020), 103838.
- Sheela Verma, Upper bound for the first nonzero eigenvalue related to the p-Laplacian. Proc. Indian Acad. Sci. Math. Sci. 130 (2020), no. 1, Paper No. 21.
- Sheela Verma, Bounds for the Steklov eigenvalues. Archiv der Mathematik (Basel) 111 (2018), no. 6, 657–668.