sheela.mat's picture
Dr. Sheela Verma
Assistant Professor
Department of Mathematical Sciences IIT (BHU)
Area of Interest: 
Spectral Geometry, Analysis on Manifolds, Riemannian Geometry

Present Position:

  • Assistant Professor, Department of Mathematical Sciences, Indian Institute of Technology (BHU) Varanasi: August, 2021 - Present.

Former Positions:

  • Assistant Professor, Department of Applied Sciences, Indian Institute of Information Technology Allahabad.
  • Post-doctoral fellow, TIFR Centre for Applicable Mathematics, Bangalore.

Research Visit:

  • Visiting Researcher, Institut de mathématiques, University of Neuchâtel, Neuchâtel, Switzerland.


  • Ph.D.,  IIT Kanpur (Thesis Advisor: Prof. G. Santhanam).
  • M.Sc.,  IIT Kanpur.
  • B.Sc., P. P. N. College, Kanpur.



  • M Ghosh; Sheela Verma, Reverse Faber-Krahn inequality for the p-Laplacian in Hyperbolic space, arXiv:2205.13372.
  • T V Anoop; Sheela Verma, Szegö-Weinberger type inequalities for symmetric domains in simply connected space forms, Journal of Mathematical Analysis and Applications (2022),
  • Bruno Colbois; Sheela Verma, Sharp Steklov upper bound for submanifolds of revolution. Journal of Geometric Analysis 31 (2021), no. 11, 11214–11225.
  • Sheela Verma, An isoperimetric inequality for the harmonic mean of the Steklov eigenvalues in hyperbolic space. Archiv der Mathematik (Basel) 116 (2021), no. 2, 193–201.
  • Sheela Verma; G. Santhanam, Sharp bounds for Steklov eigenvalues on star-shaped domains. Advances in Pure and Applied Mathematics 11 (2020), no. 2, 47–56.
  • Sheela Verma; G. Santhanam, On eigenvalue problems related to the Laplacian in a class of doubly connected domains.Monatshefte für Mathematik 193 (2020), no. 4, 879–899.
  • Sheela Verma, An upper bound for the first nonzero Neumann eigenvalue. Journal of Geometry and Physics 157 (2020), 103838.
  • Sheela Verma, Upper bound for the first nonzero eigenvalue related to the p-Laplacian. Proc. Indian Acad. Sci. Math. Sci. 130 (2020), no. 1, Paper No. 21.
  • Sheela Verma, Bounds for the Steklov eigenvalues. Archiv der Mathematik (Basel) 111 (2018), no. 6, 657–668.