arindam.chy's picture
Dr. Arindam Indra
Assistant Professor
Department of Chemistry, IIT BHU
arindam.chy@iitbhu.ac.in
9919080675
Area of Interest: 
Artificial photosynthesis, Energy conversion, MOF derived catalysts for organic reaction, Photocatalytic organic reaction

Arindam Indra
Assistant Professor
Department of Chemistry
IIT BHU (Varanasi)
Varanasi, Uttar Pradesh
India-221005
E-mail: arindam.chy@iitbhu.ac.in
Mobile: +919919080675


Ph.D and postdoc positions are available for the motivated students

Academic Background
Ph.D in the group of Prof. G. K. Lahiri, IIT Bombay, Mumbai, India, 2011
M.Sc, The University of Burdwan,  Burdwan, West Bengal, 2006
B.Sc, Hooghly Mohsin College, The University of Burdwan,  West Bengal, 2004

Professional Experience
Assistant Professor, IIT BHU, Varanasi, India (2018-present) 
Assistant Research Professor, Hanyang University, Seoul, South Korea (2016-2018)
Group leader for the catalysis and synthesis group, BasCat, Berlin, Germany (2015-2016)
Postdoctoral research associate in the group of Prof. Matthias Driess, Technische Universität Berlin, Germany (2011-2014)

Selected Publications

  • B. Singh, P. Mannu; Y. -C. Huang, R. Prakash, S. Shen, C. -L. Dong, A. Indra* Angew. Chem. Intl. Ed. 2022, https://doi.org/10.1002/anie.202211585
  • A. K. Singh, S. Ji, B. Singh, C. Das, H. Choi,* P. W. Menezes,* A. Indra*, Materials Today Chemistry. 2021, 23, 100668 
  • B. Singh, O. Prakash, P. Maiti, P. W. Menezes, and A. Indra*,Chem. Commun. 2020, 56, 15036-15039
  • P. W. Menezes, A. Indra, I. Zaharieva, C. Walter, S. Loos, S. Hoffmann, Energy & Environ. Sci. 2019, 12, 988-999
  • A. Indra, U. Paik, T. Song, Angew. Chem. Int. Ed. 2018, 57, 1241-1245 (Cover page).
  • A. Indra, T. Song, U. Paik, Adv. Mater. 2018, 1705146.
  • A. Indra, A. Acharjya,  P. W. Menezes, C. Merschjann, D. Hollmann, M. Schwarze, M. Aktas, S. Lochbrunner, A. Thomas, M. Driess,​ Angew. Chem. Int. Ed. 2017, 56, 1653-1657.
  • A. Indra, P. W. Menezes, C. Das, D. Schmeißer, M. Driess, Chem. Commun. 2017, 53, 8641-8644 (Cover page).
  • A. Indra, P. W. Menezes, N. R. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeißer, P. Strasser, M. Driess, J. Am. Chem. Soc. 2014, 136, 17530-17536.
  • A. Indra, P. W. Menezes, I. Zaharieva, E. Baktash, J. Pfrommer, M. Schwarze, H. Dau, M. Driess, Angew. Chem. Int. Ed. 2013, 52, 13206-13210 (VIP paper).
  • A. Indra, M. Doble, S. Bhaduri, G. K. Lahiri, ACS Catal. 2011, 1, 511-518.

 

 

Sr. No. Course Name Course Code
1 Chemistry I CY-101
2 Chemistry II CY-102
3 Chemistry of Transition and Inner Transition Elements CY-405
4 Chemistry of Coordination Compounds CHI-241
5 Transition and Inner Transition Elements CHI-341
6 Organometallic Chemistry CHI-441
7 Inorganic Chemistry M.Sc Lab-I CY-492
8 Inorganic Chemistry M.Sc Lab-II CY-495
9 Adsorption and Heterogeneous Catalysis CHI-423
10 Chemistry of Coordination Compounds CY-408
11 Bioinorganic Chemistry CY-521
12 Organometallic Chemistry CY-501
Artificial Photosynthesis
Artificial photosynthesis can transform CO2 into useful organics with the help of an efficient photocatalyst. This leads to renewable carbon fixation and sustainable energy conversion. The goal of this project is to build up artificial leaf which can work like natural system under visible light irradiation. Development of the photoelectrochemical cell (PEC) to continue the process of sustainable energy conversion  and production of  ~1 L of H2 per day by using the sunlight will be the ultimate achievement of this project.
 
Metal Organic Framework Derived Catalysts for Energy Conversion 
Exploring new materials with high efficiency and durability for the electrochemical processes is the primary requirement for the development in the field of energy conversion and storage. Application of metal organic framework (MOF) derived materials for the electrochemical energy conversion like oxygen evolution, hydrogen evolution, oxygen reduction or battery materials have been found to be an emerging field of research in last few years. In this project, we will focus on the systematic design of the materials from MOF and control over their inherent properties to enhance their electrochemical performances.
Photocatalytic Organic Reactions with Quantum Dots and Semiconductors 
Photocatalytic organic reactions such as selective oxidation, oxidative couplings reactions by using visible light active photocatalyst are of great importance towards achieving sustainable chemistry. In practical applications there are several challenges like low selectivity, sluggish reaction rate etc. Therefore, or objective is to develop suitable protocol to improve the activity and selectivity. We investigate the application of semiconductor materials or quantum dots by band engineering to improve the selectivity. Development of the cocatalyst systems to control the electron-hole separation and transport is also the objective of this work. 
 
Bioinspired Electrochemical Oxygen Evolution Reaction
Electrocatalytic oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) have been considered to play the pivotal role for the energy conversion and storage. Designing of new catalyst systems following the principle of nature could be the most useful way of energy conversion. In this respect, understanding the natural catalyst systems is essential to improve the efficiency of the artificial catalysts. In this project we shall develop transition metal based catalysts which can mimic the nature both structurally and functionally. Comparison of the natural and synthesized system and correlating them in the molecular level will also be studied to develop the basic understanding of this subject.
 

 

  2022  
66
 
Deciphering Ligand Controlled Structural Evolution of Prussian Blue Analogues and Their Electrochemical Activation during Alkaline Water Oxidation
B. Singh, P. Mannu; Y. -C. Huang, R. Prakash, S. Shen, C. -L. Dong, A. Indra
* 
Angew. Chem. Intl. Ed. 2022, https://doi.org/10.1002/anie.202211585

Impact factor: 16.823, Citation: 0
 
65 Designing hollow structured materials for sustainable energy conversion
B. Singh, A. Indra*
Nanomaterials for Sustainable Energy Applications (CRC Press, Taylor & Francis Group, USA)
 
64
Homoleptic Ni(II) dithiocarbamate complexes as precatalysts for electrocatalytic oxygen evolution reaction
S. K. Pal, B. Singh, J. K. Yadav, C. L. Yadav, M. G. B. Drew, N. Singh*, A. Indra,* K. Kumar*
Dalton Trans. 2022, 51, Just accepted
Impact factor:
4.469, Citation: 0
 
63 Replacing anodic oxygen evolution reaction with organic oxidation: The importance of metal (oxy)hydroxide formation as the active oxidation catalyst
‘Chemical Synthesis and Catalysis in India’ SYNLETT Special Issue

A. K. Singh, D. Kumar, B. Singh, A. Indra*
SYNLETT 2022, just accepted  (Invited Paper)
Impact factor: 2.369, Citation: 0 
 
62
Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride
Coord. Chem. Rev. 2022
Impact factor: 22.315, Citation:1
A. K. Singh, C. Das, A. Indra*
61

Introduction of high valent Mo6+ in Prussian blue analogue derived Co-layered double hydroxide nanosheets for improved water splitting 
B. Singh, A. Patel, A. Indra*
Materials Today Chemistry 2022
Impact factor:7.613, Citation:0

https://www.sciencedirect.com/science/article/pii/S2468519422001598

60 Solid-state synthesis of Cu doped CDs with peroxidase mimicking activity at neutral pH and sensing of antioxidants
K. Bijalwan, A. Kumari, N. Kaushal, A.  Indra, A. Saha
ChemNanoMat 2022
Impact factor: 3.820, Citation: 0
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnma.202200044
59 Realizing Electrochemical Transformation of Metal-Organic Framework Precatalyst into Metal Hydroxide-Oxy(hydroxide) Active Catalyst During Alkaline Water Oxidation
B. Singh, A. Yadav, A. Indra*
J. Mater. Chem. A 2022
Impact factor: 14.511, Citation: 0
https://pubs.rsc.org/en/content/articlehtml/2022/ta/d1ta09424f
58 Photoelectrochemical Water Splitting with Nitride-Based Photoelectrodes
A. Saha, A. Indra*
Mater. Horizons: From Nat. to Nanomaterials: Photoelectrochemical Hydrogen Generation, 978-981-16-7284-2, 498335_1_En, (Chapter 8)
Book Chapter: Springer Nature
https://link.springer.com/chapter/10.1007/978-981-16-7285-9_8
57 Polyaniline Coating Enables Electronic Structure Engineering in Fe3O4 to Promote Alkaline Oxygen Evolution Reaction
Y. Zou, Y. Huang, L. Jiang, A. Indra,* Y. Wang,* H. Liu,* J. Wang*
Nanotechnology 2022
Impact factor: 3.953, Citation:0
https://iopscience.iop.org/article/10.1088/1361-6528/ac475c/meta
56 Alkaline Oxygen Evolution: Exploring Synergy between fcc and hcp Cobalt Nanoparticles Entrapped in N-doped Graphene
A. K. Singh, S. Ji, B. Singh, C. Das, H. Choi,* P. W. Menezes,* A. Indra*
Materials Today Chemistry 2022, 23, 100668
Impact factor: 7.613, Citation:7
https://www.sciencedirect.com/science/article/pii/S2468519421002482
  2021  
55 Modulating Electronic Structure of Metal Organic Framework Derived Catalysts for Electrochemical Water Oxidation
B. Singh, A. Singh, A. Yadav, A. Indra*
Coord. Chem. Rev. 2021, 447, 214144
Impact factor: 22.315, Citation:14
https://www.sciencedirect.com/science/article/pii/S0010854521004185
54 Ni-NiO Heterojunction: A Versatile Nanocatalyst for the Regioselective Halogenation and Oxidative Esterification of Aromatics
N. Bhardwaj, A. K. Singh, N. Tripathi, B. Goel, A. Indra* and S. K. Jain*
New J. Chem., 2021, 45, 14177-14183
Impact factor: 3.925, Citation:3
https://pubs.rsc.org/en/content/articlehtml/2021/nj/d1nj02777h
53
Ruthenium–Benzothiadiazole Building Block Derived Dynamic Heterometallic Ru–Ag Coordination Polymer and Its Enhanced Water-Splitting Feature
S. Dey, B. Singh, S. Dasgupta, A. Dutta*, A. Indra*, G. K. Lahiri*
Inorg. Chem. 2021, 60, 9607–9620
Impact factor: 5.436, Citation:4
https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.1c00865
52
Exploring the Mechanism of Peroxodisulfate Activation with Silver Metavanadate to Generate Abundant Reactive Oxygen Species
A. K. Singh, D. Hollmann, M. Schwarze, C. Panda, B. Singh, P. W. Menezes, A. Indra*
Adv. Sustain. Sys., 2021202000288
Impact factor: 6.737Citation:4
https://onlinelibrary.wiley.com/doi/abs/10.1002/adsu.202000288
51
Promoting Photocatalytic Hydrogen Evolution Activity of Graphitic Carbon Nitride with Hole Transfer Agents
A. Indra,* R. Beltrán-Suito, M. Müller, R. P. Sivasankaran, M. Schwarze, A. Acharjya, B. Pradhan, J. Hofkens, A. Brückner, A. Thomas, P. W. Menezes,  and M. Driess
ChemSusChem, 202114, 306–312 
 
Impact factor: 8.928 , Citation:5
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.202002500
50
Tuning properties of CoFe-layered double hydroxide by vanadium substitution for improved water splitting activity
B. Singh, A Indra*,
Dalton Trans. 2021, 50, 2359-2363
Impact factor: 4.469Citation: 13
49
Superior performance of ultrathin metal organic framework nanosheets for antiwear and antifriction testing
A. K. Singh, A. Yadav, R. B. Rastogi, A. Indra*
Colloids Surf. A Physicochem Eng Asp. 2020, 613, 126100
Impact factor: 5.518, Citation: 4
   2020  
48 Electrochemical transformation of Prussian blue analogue into ultrathin layered double hydroxide nanosheets for water splitting
B. Singh, O. Prakash, P. Maiti, P. W. Menezes, and A. Indra*
Impact factor: 6.065, 
Citation: 17

Chem. Commun. 2020, 56, 15036-15039.
https://pubs.rsc.org/en/content/articlehtml/2020/cc/d0cc06362b
47

Amidation of Aldehydes with Amines under Mild Conditions Using Metal‐Organic Framework Derived NiO@ Ni Mott‐Schottky Catalyst
B. Goel, V. Vyas, N. Tripathi, A. K. Singh, P. W. Menezes, A. Indra* and S. K Jain
ChemCatChem 2020, 12, 5743-5749

Impact factor: 5.497, Citation: 9
https://chemistryeurope.onlinelibrary.wiley.com/doi/abs/10.1002/cctc.202001041

46
Bifunctional nanocatalysts for water splitting and its challenges
 A. Indra*
and P. W. Menezes
Nanomaterials for Sustainable Energy and environmental Remediation Elsevier 2020
Impact factor: 0.0, Citation: 1

https://www.sciencedirect.com/science/article/pii/B9780128193556000042
45 Electrochemical transformation of MOF in to ultrathin metal hydroxide-(oxy)hydroxide nanosheets for alkaline water oxidation
B. Singh, O. Prakash, P. Maiti, A. Indra*
Impact factor: 6.140, 
Citation: 19
ACS Appl. Nano Mater. 2020, 3, 6693-6701.

https://pubs.acs.org/doi/abs/10.1021/acsanm.0c01137
44 Prussian Blue- and Prussian Blue analogue derived materials: Progress and prospects for electrochemical energy conversion
B. Singh, A. Indra*
Mater. Today Energy 2020, 14, 100404.
Impact factor: 9.257, Citation: 46

https://www.sciencedirect.com/science/article/pii/S246860692030023X
43 Designing self-supported metal organic framework derived catalysts for electrochemical water splitting
B. Singh, A. Indra*
Chem. Asian. J2020, 15, 607-623.
Impact factor: 4.839, Citation: 29
https://onlinelibrary.wiley.com/doi/abs/10.1002/asia.201901810
42  Role of redox active and redox non-innocent ligands in water splitting
B. Singh, A. Indra*
Inorganica Chim. Acta 2020, 506, 119440.
Impact factor: 3.118, Citation: 9
https://www.sciencedirect.com/science/article/pii/S0020169319311168
41 Detecting structural transformation of cobalt phosphonate to active bifunctional catalysts for electrochemical water-splitting
A. Indra, P. W. Menezes, I. Zaharieva, H. Dau, M. Driess
J. Mater. Chem A 2020, 8, 2637-2643.

Impact factor: 14.511, Citation: 47
https://pubs.rsc.org/en/content/articlehtml/2020/ta/c9ta09775a
40 Improved chemical water oxidation with Zn in the tetrahedral site of spinel-type ZnCo2O4 nanostructure
B. Chakraborty, A. Indra, P. V. Menezes, M. Dreiss, P. W. Menezes

Mater Today Chem. 2020, 15, 100226.
Impact factor:
7.613Citation: 15
https://www.sciencedirect.com/science/article/pii/S2468519419302381

 
39 Surface and interface engineering in transition metal based catalysts for electrochemical water oxidation
B. Singh, A. Indra*
Mater Today Chem. 2020, 16, 100239.

Impact factor: 7.613, Citation: 15
https://www.sciencedirect.com/science/article/pii/S2468519419302514
  2019  

38

Chemical and structural engineering of transition metal boride towards excellent and sustainable hydrogen evolution reaction
S. Dutta, H. Hand, M. Jee, H. Choi, J. Kwon, K. Parka, A. Indra, K. M. Kim, U. Paik, T. Song
Impact factor: 19.069, Citation: 51
Nano Energy 2020, 67, 104245.

https://www.sciencedirect.com/science/article/pii/S2211285519309528

37
Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride
S. Dutta, A. Indra, Y. Feng, H. S. Han, T. Song
Appl. Catal. B 2019, 241, 521-527
36 Helical cobalt borophosphates to master durable overall water-splitting
P. W. Menezes, A. Indra, I. Zaharieva, C. Walter, S. Loos, S. Hoffmann
Energy & Environ. Sci. 2019, 12, 988-999

Impact factor: 38.532, Citation:145
https://pubs.rsc.org/en/content/articlehtml/2018/ee/c8ee01669k
   ​2018  
35
Metal organic framework derived materials: Progress and prospects for the energy conversion and storage
A. Indra, T. Song, U. Paik
Adv. Mater. 2018, 1705146.
Impact factor: 32.086, Citation:252
34
Electrochemical energy conversion and storage with zeolitic imidazolate framework derived materials: A
perspective

S. Dutta, Z. Liu, H. Han, A. Indra,* T. Song
ChemElectroChem 2018, 5, 3571-3588
Impact factor: 4.782, Citation: 29
33
An Intriguing Pea‐Like Nanostructure of Cobalt Phosphide on Molybdenum Carbide Incorporated Nitrogen‐Doped Carbon Nanosheets for Efficient Electrochemical Water Splitting
S. Dutta, A. Indra, H. S. Han, T. Song
ChemSusChem 2018, 11, 3956-3964
32
Photocatalytic and photosensitized water splitting: A plea for well-defined and commonly accepted protocol
A. Indra, P. W. Menezes, M. Driess
Comptes Rendus Chimie 2018, 21, 909-915.
31 Boosting electrochemical water oxidation with metal hydroxide carbonate templated Prussian blue analogues
A. Indra, U. Paik, T. Song
Angew. Chem. Int. Ed. 2018, 57, 1241-1245 (Cover page).
Impact factor: 16.823, Citation: 145

https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201710809
30
Mixed valency in ligand-bridged diruthenium frameworks: divergences and perspectives
A. S. Hazari, A. Indra,*  G. K. Lahiri*
RSC Adv. 2018, 8, 28895-28908 (Invited paper).
Impact factor: 4.036, Citation: 14
   ​2017  
29
Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity
S. Dutta, A. Indra, Y. Feng, T. Song, U. Paik
ACS Appl. Mater. Interfaces 2017, 9, 33766-33774.
Impact factor: 10.383, Citation: 186
https://pubs.acs.org/doi/abs/10.1021/acsami.7b07984
28
Boosting Visible‐Light‐Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System
A. Indra, A. Acharjya, P. W. Menezes, C. Merschjann, D. Hollmann, M. Schwarze, M. Aktas, S. Lochbrunner, A. Thomas, M. Driess
Angew. Chem. Int. Ed. 2017, 56, 1653-1657.
Impact factor: 16.823, Citation: 235
27
Boosting electrochemical water oxidation through replacement of Oh Co sites in cobalt oxide spinel with manganese
P. W. Menezes, A. Indra, V. Gutkin, M. Driess
Chem Commun. 2017, 53, 8018-8021.
Impact factor: 6.065, Citation: 95

https://pubs.rsc.org/en/content/articlelanding/2017/cc/c7cc03749j
26
Alkaline electrochemical water oxidation with multi-shelled cobalt manganese oxide hollow spheres
A. Indra, P. W. Menezes, C. Das, D. Schmeiβer, M. Driess
Chem Commun. 2017, 53, 8641-8644 (Cover page).
Impact factor: 6.065, Citation: 50

https://pubs.rsc.org/en/content/articlelanding/2017/cc/c7cc03566g
25
A facile corrosion approach to the synthesis of highly active CoO x water oxidation catalysts
A. Indra, P. W. Menezes, C. Das, C. Göbel, M. Tallarida, D. Schmeiβer, M. Driess
J. Mater. Chem. A 2017, 5, 5171-5177.
Impact factor: 14.511, Citation: 73

https://pubs.rsc.org/en/content/articlelanding/2017/ta/c6ta10650a
24
Uncovering the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall water splitting
P. W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel, V. Gutkin, D. Schmeiβer, M. Driess
ACS Catal. 2017, 7, 103-109.
Impact factor: 13.700, Citation: 268

https://pubs.acs.org/doi/abs/10.1021/acscatal.6b02666
   ​2016  
23
Morphology‐Dependent Activities of Silver Phosphates: Visible‐Light Water Oxidation and Dye Degradation
P. W. Menezes, A. Indra, M. Schwarze, F. Schuster, M. Driess
ChemPlusChem 2016, 81, 1068-1074.
Impact factor: 3.210, Citation: 20
22 A Single‐Source Precursor Approach to Self‐Supported Nickel–Manganese‐Based Catalysts with Improved Stability for Effective Low‐Temperature Dry Reforming of Methane
P. W. Menezes, A. Indra, P. Littlewood, C. Göbel, R. Schomäcker, M. Driess
ChemPlusChem, 2016, 81, 370-377.
Impact factor: 3.210, Citation: 14

https://onlinelibrary.wiley.com/doi/full/10.1002/cplu.201600064
21 Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt–zinc oxide catalysts for efficient oxidation of water
P. W. Menezes, A. Indra, A. Bergmann, P. Chernev, C. Walter, H. Dau, P. Strasser, M. Driess
J. Mater. Chem. A 2016, 4, 10014-10021.
Impact factor: 14.511, Citation: 143

https://pubs.rsc.org/en/content/articlelanding/2016/ta/c6ta03644a
20
Nickel as a co-catalyst for photocatalytic hydrogen evolution on graphitic-carbon nitride (sg-CN): what is the nature of the active species?
A. Indra, P. W. Menezes, K. Kailasam, D. Hollmann, M. Schröder, A. Thomas, A. Brückner, M. Driess
Chem Commun. 2016, 52, 104-107.
Impact factor: 6.065, Citation: 128
   ​2015  
19
Water soluble polymer supported silver and platinum nanoparticles for efficient reduction of 4-nitrophenol
A. Indra, G. K. Lahiri
J. Indian Chem. Soc. 2015, 92, 1791-1798 (Invited paper).
Impact factor: 0.284, Citation: 0

https://www.researchgate.net/publication/287217307
18
Significant role of Mn (III) sites in eg1 configuration in manganese oxide catalysts for efficient artificial water oxidation
A. Indra, P. W. Menezes, F. Schuster, M. Driess
J. Photochem. Photobiol. B 2015, 152, 156-161 (Invited paper).
Impact factor: 5.141, Citation: 42
17
Uncovering Structure–Activity Relationships in Manganese‐Oxide‐Based Heterogeneous Catalysts for Efficient Water Oxidation
A. Indra, P. W. Menezes, M. Driess
ChemSusChem 2015, 8, 776-785
Impact factor: 9.140, Citation: 91

https://onlinelibrary.wiley.com/doi/full/10.1002/cssc.201402812
16
High-performance oxygen redox catalysis with multifunctional cobalt oxide nanochains: morphology-dependent activity
P. W. Menezes, A. Indra, D. González-Flores, N. R. Sahraie, I. Zaharieva, M. Schwarze, P. Strasser, H. Dau, M. Driess
ACS Catal. 2015, 5, 2017-2027.
Impact factor: 13.700, Citation: 219
15
Using nickel manganese oxide catalysts for efficient water oxidation
P. W. Menezes, A. Indra, O. Levy, K. Kailasam, J. Pfrommer, V. Gutkin, M. Driess
Chem. Commun. 2015, 51, 5005-5008.
Impact factor: 6.065, Citation: 95
14
Cobalt–manganese‐based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions
P. W. Menezes, A. Indra, N. R. Sahraie, A. Bergmann, P. Strasser, M. Driess
ChemSusChem 2015, 8, 164-171.
Impact factor: 9.140, Citation: 220

https://onlinelibrary.wiley.com/doi/10.1002/cssc.201402699
   ​2014  
13
Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides
A. Indra, P. W. Menezes, N.R. Sahraie, A. Bergmann, C. Das, M. Tallarida
J. Am. Chem. Soc. 2014, 136, 17530-17536
Impact factor: 16.383, Citation: 519
https://pubs.acs.org/doi/abs/10.1021/ja509348t
12
Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry
P. W. Menezes, A. Indra, P. Littlewood, M. Schwarze, C. Göbel, R. Schomäcker, M. Driess
ChemSusChem 2014, 7, 2202-2211
Impact factor: 9.140, Citation: 119

https://onlinelibrary.wiley.com/doi/full/10.1002/cssc.201402169
11 High Catalytic Synergism between the Components of the Rhenium Complex@ Silver Hybrid Material in Alkene Epoxidations
A. Indra, M. Greiner, A. K. Gericke, R. Schlögl, D. Avnir, M. Driess
ChemCatChem, 2014, 6, 1935-1939.
Impact factor: 5.497, Citation: 9

https://onlinelibrary.wiley.com/doi/full/10.1002/cctc.201402042
10
Visible light driven non-sacrificial water oxidation and dye degradation with silver phosphates: multi-faceted morphology matters
A. Indra, P.W. Menezes, M. Schwarze, M. Driess
New J. Chem. 2014, 38, 1942-1945 (Cover page, Invited paper)
Impact factor: 3.925, Citation: 47
   ​2013  
9
Active Mixed‐Valent MnOx Water Oxidation Catalysts through Partial Oxidation (Corrosion) of Nanostructured MnO Particles
A. Indra, P. W. Menezes, I. Zaharieva, E. Baktash, J. Pfrommer, M. Schwarze, H. Dau, M. Driess
Angew. Chem. Int. Ed. 2013, 52, 13206-13210 (VIP paper).
Impact factor: 16.823, Citation: 285

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201307543
8
Hydroxyapatite supported palladium catalysts for Suzuki–Miyaura cross-coupling reaction in aqueous medium
A. Indra, C. S. Gopinath, S. Bhaduri, G. K. Lahiri
Catal. Sci. Technol. 2013, 3, 1625-1633.
Impact factor: 6.177, Citation: 35
7 Chemoselective Hydrogenation and Transfer Hydrogenation of Olefins and Carbonyls with the Cluster‐Derived Ruthenium Nanocatalyst in Water
A. Indra, P. Maity, S. Bhaduri, G. K. Lahiri
ChemCatChem 2013, 5, 322-330.
Impact factor: 5.497 Citation: 23

https://onlinelibrary.wiley.com/doi/full/10.1002/cctc.201200448
   ​2012  
6
Carbon Monoxide Assisted Self‐Assembled Platinum Nanoparticles for Catalytic Asymmetric Hydrogenation
A. Indra, G. K. Lahiri
Chem. Eur. J. 2012, 18, 6742-6745.
Impact factor: 5.020, Citation: 9
   ​2011  
5 Control of chemoselectivity in hydrogenations of substituted nitro-and cyano-aromatics by cluster-derived ruthenium nanocatalysts
A. Indra, N. Maity, P. Maity, S. Bhaduri, G. K. Lahiri
J. Catal. 2011, 284, 176-183.
Impact factor: 8.047, Citation: 14

https://www.sciencedirect.com/science/article/pii/S0021951711002995
4
Pentacoordinated copper–sparteine complexes with chelating nitrite or nitrate ligand: Synthesis and catalytic aspects
A. Indra, S. M. Mobin, S. Bhaduri, G. K. Lahiri
Inorg. Chim. Acta 2011, 374, 415-421 (Invited paper).
Impact factor: 3.118, Citation: 13
3
Selective hydrogenation of chloronitrobenzenes with an MCM-41 supported platinum allyl complex derived catalyst
A. Indra, P. R. Rajamohanan, C. S. Gopinath, S. Bhaduri, G. K. Lahiri
Appl. Catal. A 2011, 399, 117-125.
Impact factor: 5.723, Citation: 19
2 Kinetic and scanning transmission electron microscopy investigations on a MCM-41 supported cluster derived enantioselective ruthenium nanocatalyst
A. Indra, M. Doble, S. Bhaduri, G.K. Lahiri
ACS Catal. 2011, 1, 511-518.
Impact factor: 13.700, Citation: 8

https://pubs.acs.org/doi/10.1021/cs200058q
   ​2008  
1 MCM-41-supported ruthenium carbonyl cluster-derived catalysts for asymmetric hydrogenation reactions
A. Indra, S. Basu, D. G. Kulkarni, C. S. Gopinath, S. Bhaduri, G. K. Lahiri
Appl. Catal. A 2008, 344, 124-130.
Impact factor: 5.723, Citation: 17

https://www.sciencedirect.com/science/article/pii/S0926860X08002408

 

 

 
 
 
 
 

 

Research Scholars

 

 

 
Baghendra Singh
INSPIRE Fellow
M.Sc (Dr. R. M. L. Avadh University)
Roll no.: 18051010
E-mail: baghendrasingh.rs.chy18@iitbhu.ac.in
Mobile: +918726112056
Blood group: A(+)
Research Interest: Metal Organic Framework (MOF)
 Derived Catalysts for Electrochemical Energy Conversion

Hobby: Playing chess, traveling and cooking

 

 
Priyanka Maurya
INSPIRE Fellow
M.Sc (University of Allahabad) 

Roll no.: 18051012
E- mail:  priyankamaurya.rs.chy18@itbhu.ac.in
Mobile: +919451972119

Blood group: O(+)
Research Interest: Self-Supported Zeolitic Imidazolate Framework Derived Catalysts for Electrochemical Energy Conversion
Hobby: Music

 

 
Ved Vyas
JRF (CSIR)

M.Sc (University of Allahabad)
Roll no.: 18051011
E- mail:  vedvyas.rs.chy18@itbhu.ac.in
Mobile: +917897046259
Blood group: A(+)
Research Interest: Metal Organic Framework Derived Catalysts for Organic Reactions
Hobby:  Dancing (Bhangra dance), Music, Reading

 

   

 

Deepak Kumar
JRF (UGC)
M.Sc (
D D U Gorakhpur University)
Roll no.: 19051506
E- mail:  deepak.rs.chy19@iitbhu.ac.in
Mobile: +919129096934
Blood group: A(+)
Research Interest: Development of 2D Semiconductors for Photocatalytic Energy Conversion
Hobby: Playing cricket and vollyball
 
       
Ajit Kumar Singh
Teaching Assistant
M.Sc (Banaras Hindu University)
Roll no.: 18051008
E- mail:  ajitkumarsingh.rs.chy18@iitbhu.ac.in
Mobile: +917376354741
Blood group: B(-)
Research Interest: Development of Inorganic Semiconductors for Photocatalytic Energy Conversion
Hobby: Eating and partying
   

 
Vishesh Kumar
JRF (CSIR)
M.Sc (
University of Allahabad)
Roll no.: 19051505
E- mail:  visheshkumar.rs.chy19@iitbhu.ac.in
Mobile: +917235035038
Blood group: B(+)
Research Interest: Development of Halide Pervoskite Quantum Dots for Photocatalytic Organic Reaction
Hobby: Playing cricket 
                                                                                                                                              
Sr. No. Name Institute Research Area Category Year
1 Atri Patel IIT(BHU) Metal Organic Framework Project Student 2018
2 Chandan Das NIT Surat Photocatalysis  Internship Student 2018
3 Poulami Sengupta BIT MESRA Metal Organic Framework  Project Student 2018
4 Pourush Gupta IIT(BHU) Metal Organic Framework Project Student 2019
5 Amrendra Singh University of Allahabad Self-Supported MOF Derived catalyst DST INSPIRE Scholar 2019
6 Amit Kumar IISER TVM Metal Organic Framework Internship Student 2019
7 Shekhar Kumar IISER Kolkata Zeolitic Imidazole Framework Internship Student 2019
8  Shreya Singh GFSU Gujarat Layared Double Hydroxide Internship Student 2019
9 Archita Tripathi GFSU Gujarat Photocatalysis Internship Student 2019
10 Abhijeet Rana Banaras Hindu University Zeolitic Imidazole Framework Internship Student 2019
11 Prattay Das Banaras Hindu University Metal Organic Framework Internship Student 2019
12 Rohon Mondal Banaras Hindu University Metal Organic Framework Internship Student 2019
13 Rakesh Priyadarshi Banaras Hindu University Zeolitic Imidazole Framework Internship Student 2019
14  Ankur Khapare  DAVV (Indore) Zeolitic Imidazole Framework Internship Student 2020
15  Suhani Tripathi DAVV (Indore) Zeolitic Imidazole Framework Internship Student 2020
16 Kushal Dubey NIT SIKKIM Metal Organic Framework Internship Student 2022
17 Jyoti Singh NIT SIKKIM Zeolitic Imidazole Framework Internship Student 2022
18 Deopal Birua IISER TVM Zeolitic Imidazole Framework Internship Student 2022
19 Shivam Kumar IISER TVM Metal Organic Framework Internship Student 2022
20 Sanju Central University Of Haryana Self-Supported MOF Derived catalyst Internship Student 2022
21 Harish Kumar Central University Of Haryana Zeolitic Imidazole Framework Internship Student 2022

  

Sr. No. Project Name Funding Amount (Rs)
1 Development of Transition Metal Based Nanocatalysts for Bio-inspired Water Oxidation CSIR 16,00,000
2 Promoting Water Oxidation Reaction with Electrochemically Synthesized Ultrathin Layered Double Hydroxide Nanosheets DST-SERB 26,51,000
3 Band Gap Engineering of Semiconductors for Artificial Photosynthesis IIT-BHU 10,00,000